人类已达硅计算架构上限,预计2030年AI会消耗全球电力供应50%
2023-03-26 10:56:05
现在,由于缺乏技术创新,美国已经到达了一个平稳期。
赖特定律(Wright’s Law)在很多行业中都成立——制造工艺每改进20%左右,生产率就会翻一番。
在技术领域,它表现为摩尔定律。
在1960年代,英特尔联合创始人Gordon Moore注意到集成电路中的晶体管数量似乎同比翻了一番,提出了摩尔定律。
从此,这个定律就成为市场和工程之间契约的基础,利用过剩的计算能力和尺寸的缩小,推动计算堆栈中产品的构建。
那时的预期是,有了更快和更便宜的处理器,计算能力会随着时间呈指数级提高。
然而,构成摩尔定律的不同力量已经发生了变化。
几十年来,摩尔定律背后的推动力是Dennard缩放定律。晶体管尺寸和功耗同步减半,使每单位能量的计算量增加一倍(后者也称为Koomey’s LawKoomey定律)。
2005 年,由于电流泄漏导致芯片升温,这种缩放比例开始失效,随之而来的是具有单个处理核心的芯片的性能停滞不前。
为了保持计算增长轨迹,芯片行业转向了多核架构:多个微处理器“粘合”在一起。虽然这可能在晶体管密度方面延长了摩尔定律,但它增加了整个计算堆栈的复杂性。
对于某些类型的计算任务,如机器学习或计算机图形,这带来了性能提升。但是对于很多并行化不好的通用计算任务,多核架构无能为力。
总之,很多任务的计算能力不再呈指数级增长。
即使在多核超级计算机的性能上,从TOP500 (全球最快超级计算机排名)来看,2010年左右也出现了明显的拐点。